

QUESTION PAPER WITH SOLUTION

MATHEMATICS _ 6 Sep. _ SHIFT - 1

H.O.: 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in |⊠: info@motion.ac.in

- The region represented by $\{z = x + iy \in C : |z| Re(z) \le 1\}$ is also given by the inequality: Q.1 ${z = x + iy \in C : |z| - Re(z) \le 1}$
 - (1) $y^2 \le 2\left(x + \frac{1}{2}\right)$ (2) $y^2 \le x + \frac{1}{2}$ (3) $y^2 \ge 2(x+1)$ (4) $y^2 \ge x + 1$

Sol.

$$z = x + iy \in c : |z| -Re(z) \le 1$$

$$|z| = \sqrt{x^2 + y^2}$$

$$Rc(z) = x$$

$$Rc(z) = x$$

 $|z| - Re(z) \le 1$

$$\Rightarrow \sqrt{x^2 + y^2} - x \le 1$$

$$\Rightarrow \sqrt{x^2 + y^2} \le 1 + x$$

$$\Rightarrow x^2 + y^2 \le 1 + x^2 + 2x$$

$$\Rightarrow y^2 \le 2\left(x + \frac{1}{2}\right)$$

- **Q.2** The negation of the Boolean expression $p \lor (\sim p \land q)$ is equivalent to:
 - (1) p ∧ ~q
- (2) $\sim p \vee \sim q$
- (3) $\sim p \vee q$
- (4) ~p ∧ ~q

Sol.

$$p \vee (\sim p \wedge q)$$

$$(p \land \sim p) \land (p \lor q)$$

$$D \vee C$$

$$\sim (p \lor (\sim p \land q)) = \sim (P \lor q)$$

$$= (\sim P) \land (\sim q)$$

$$= (\sim P) \land (\sim q)$$

The general solution of the differential equation $\sqrt{1+x^2+y^2+x^2y^2} + xy\frac{dy}{dx} = 0$ is: **Q.3** (where C is a constant of integration)

(1)
$$\sqrt{1+y^2} + \sqrt{1+x^2} = \frac{1}{2} \log_e \left(\frac{\sqrt{1+x^2} - 1}{\sqrt{1+x^2} + 1} \right) + C$$

(2)
$$\sqrt{1+y^2} - \sqrt{1+x^2} = \frac{1}{2} \log_e \left(\frac{\sqrt{1+x^2}-1}{\sqrt{1+x^2}+1} \right) + C$$

(3)
$$\sqrt{1+y^2} + \sqrt{1+x^2} = \frac{1}{2} \log_e \left(\frac{\sqrt{1+x^2}+1}{\sqrt{1+x^2}-1} \right) + C$$

(4)
$$\sqrt{1+y^2} - \sqrt{1+x^2} = \frac{1}{2} \log_e \left(\frac{\sqrt{1+x^2}+1}{\sqrt{1+x^2}-1} \right) + C$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

Sol.

$$\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy \frac{dy}{dx} = 0$$

$$\sqrt{(1+x^2)(1+y^2)} + xy \frac{dy}{dx} = 0$$

$$\frac{\sqrt{(1+x^2)}dx}{x} = -\frac{y}{\sqrt{1+y^2}} dy$$

Integrate the equation

$$\int \frac{\sqrt{1+x^2}}{x} \, dx = -\int \frac{y}{\sqrt{1+y^2}} \, dy$$

$$1 + x^2 = t^2$$

2xdx = 2tdt

$$dx = \frac{t}{x} dt$$

$$1 + y^2 = z^2$$

$$2ydy = 2zdz$$

$$\int \frac{t.tdt}{t^2 - 1} = -\int \frac{zdx}{z}$$

$$\int \frac{t^2 - 1 + 1}{t^2 - 1} dt = -z + c$$

$$\int 1 dt + \int \frac{1}{t^2 - 1} dt = -z + c$$

$$t + \frac{1}{2} \ln \left(\frac{t-1}{t+1} \right) = -z + c$$

$$\sqrt{1+x^2} + \frac{1}{2} \ln \left(\frac{\sqrt{1+x^2} - 1}{\sqrt{1+x^2} + 1} \right) = -\sqrt{1+y^2} + c$$

$$\sqrt{1+y^2} + \sqrt{1+x^2} = \frac{1}{2} \ln \left(\frac{\sqrt{x^2+1}+1}{\sqrt{x^2+1}-1} \right) + c$$

Let L_1 be a tangent to the parabola $y^2 = 4(x + 1)$ and L_2 be a tangent to the parabola **Q.4** $y^2 = 8(x + 2)$ such that L_1 and L_2 intersect at right angles. Then L_1 and L_2 meet on the straight

$$(1) x + 2y = 0$$

$$(2) x + 2 = 0$$

$$(3) 2x + 1 = 0$$

$$(4) x + 3 = 0$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

Sol. 4

Let tangent of
$$y^2 = 4(x + 1)$$

 $L_1: t_1y = (x + 1) + t_1^2(i)$
and tangent of $y^2 = 8(x + 2)$
 $L_2: t_2y = (x + 2) + 2t_2^2$
 $L_1 \perp L_2$

$$\frac{1}{t_1} \cdot \frac{1}{t_2} = -1$$

$$t_1t_2 = -1$$

$$t_2(i) - t_1(ii)$$

$$t_1t_2y = t_2(x + 1) + t_2 \cdot t_1^2$$

$$t_1t_2y = t_1(x + 2) + 2t_2^2 \cdot t_1$$

$$\overline{(t_2-t_1) \times + (t_2-2t_1) + t_2t_1(t_1-2t_2)} = 0$$

$$(t_2-t_1) \times + (t_2-2t_1) - (t_1-2t_2) = 0$$

$$(t_2-t_1) \times + 3t_2 - 3t_1 = 0$$

$$\Rightarrow x + 3 = 0$$

Q.5 The area (in sq. units) of the region A = $\{(x, y): |x| + |y| \le 1, 2y^2 \ge |x| \}$

(1)
$$\frac{1}{6}$$

(2)
$$\frac{5}{6}$$

(3)
$$\frac{1}{3}$$

(4)
$$\frac{7}{6}$$

Sol. 2

Total area =
$$4\int_{0}^{1/2} \left[(1-x) - \left(\sqrt{\frac{x}{2}} \right) \right] dx$$

$$= 4 \left[x - \frac{x^2}{2} - \frac{1}{\sqrt{2}} \frac{x^{3/2}}{3/2} \right|_{0}^{1/2}$$

$$= 4 \left[\frac{1}{2} - \frac{1}{8} - \frac{\sqrt{2}}{3} \left(\frac{1}{2} \right)^{3/2} \right]$$

$$= 4 \times \frac{5}{24} = \frac{5}{6}$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access
 Live Test Paper Discussion ◆ Final Revision Exercises

MOTION

- The shortest distance between the lines $\frac{x-1}{0} = \frac{y+1}{-1} = \frac{z}{1}$ and x + y + z + 1 = 0, Q.6 2x - y + z + 3 = 0 is:
 - (1) 1
- (2) $\frac{1}{\sqrt{2}}$ (3) $\frac{1}{\sqrt{3}}$ (4) $\frac{1}{2}$

Sol. 3

Plane through line of intersection is

$$x + y + z + 1 + \lambda (2x - y + z + 3) = 0$$

It should be parallel to given line

$$0(1 + 2\lambda) - 1(1 - \lambda) + 1(1 + \lambda) = 0 \Rightarrow \lambda = 0$$

Plane: x + y + z + 1 = 0

Shortest distance of (1, -1, 0) from this plane

$$= \frac{|1-1+0+1|}{\sqrt{1^2+1^2+1^2}} = \frac{1}{\sqrt{3}}$$

- **Q.7** Let a, b, c, d and p be any non zero distinct real numbers such that $(a^2 + b^2 + c^2)p^2 - 2(ab + bc + cd)p + (b^2 + c^2 + d^2) = 0$. Then:
 - (1) a, c, p are in G.P.

(2) a, b, c, d are in G.P.

(3) a, b, c, d are in A.P.

(4) a, c, p are in A.P.

Sol.

 $(a^2 + b^2 + c^2)p^2 - 2(ab + bc + cd)p + b^2 + c^2 + d^2) = 0$

$$(a^2p^2 - 2abp + b^2] + [b^2p^2 - 2bcp + c^2] + [c^2p^2 - 2cdp + d^2]$$

$$(ap - b)^2 + (bp - c)^2 + (cp - d)^2 = 0$$

$$\frac{b}{a} = \frac{c}{b} = \frac{d}{c} = p$$

$$bp = c$$

$$cp = d$$

a, b, c, d are in G.P.

- **Q.8** Two families with three members each and one family with four members are to be seated in a row. In how many ways can they be seated so that the same family members are not separated?
 - (1) 2! 3! 4!
- $(2)(3!)^3\cdot(4!)$
- $(3) 3! (4!)^3$
- $(4)(3!)^2\cdot(4!)$

Sol. 2

 $F_1 \rightarrow 3$ members

 $F_2 \rightarrow 3$ members

 $F_3 \rightarrow 4$ members

No. of ways can they be seated so that the same family members are not separated $= 3! \times 3! \times 3! \times 4! = (3!)^3.4!$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

 ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

Q.9 The values of λ and μ for which the system of linear equations

$$x + y + z = 2$$

$$x + 2y + 3z = 5$$

$$x + 3y + \lambda z = \mu$$

has infinitely many solutions are, respectively:

- (1) 6 and 8
- (2) 5 and 8
- (3) 5 and 7
- (4) 4 and 9

Sol. 2

$$x + y + z = 2$$

$$x + 2y + 3z = 5$$

$$x + 3y + \lambda z = \mu$$

has infinitely many solutions

$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & \lambda \end{vmatrix} = 0$$

$$R_2 \rightarrow R_2 - R_1$$

$$R_3^2 \rightarrow R_3^2 - R_1^2$$

$$\begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & \lambda - 1 \end{vmatrix} = 0$$

$$(\lambda -1 -4) = 0$$

$$\Rightarrow \lambda = 5$$

$$\Delta_3 = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & 5 \\ 1 & 3 & \mu \end{vmatrix} = 0$$

$$\begin{array}{c} \textbf{R}_2 \rightarrow \textbf{R}_2 - \textbf{R}_1 \\ \textbf{R}_3 \rightarrow \textbf{R}_3 - \textbf{R}_1 \end{array}$$

$$R_3 \rightarrow R_3 - R_1$$

$$\begin{vmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \end{vmatrix} = 0$$

$$(\mu - 2)-6) = 0$$

$$\Rightarrow \mu = 8$$

$$\lambda = 5, \mu = 8$$

- Doubt Support ◆ Advanced Level Test Access
- ◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION

Q.10 Let m and M be respectively the minimum and maximum values of

$$\begin{vmatrix} \cos^2 x & 1 + \sin^2 x & \sin 2x \\ 1 + \cos^2 x & \sin^2 x & \sin 2x \\ \cos^2 x & \sin^2 x & 1 + \sin 2x \end{vmatrix}$$

Then the ordered pair (m, M) is equal to:

$$(1)(-3,-1)$$

$$(3)(1,3)$$
 $(4)(-3,3)$

Sol.

$$\begin{vmatrix} \cos^2 x & 1 + \sin^2 x & \sin 2x \\ 1 + \cos^2 x & \sin^2 x & \sin 2x \\ \cos^2 x & \sin^2 x & 1 + \sin 2x \end{vmatrix}$$

$$R_1 \rightarrow R_1$$
 – R_2 , $R_3 \rightarrow R_3$ – R_2

$$\begin{vmatrix}
-1 & 1 & 0 \\
1 + \cos^2 x & \sin^2 x & \sin 2x \\
-1 & 0 & 1
\end{vmatrix}$$

$$\Rightarrow -1(\sin^2 x) - 1(1 + \cos^2 x + \sin 2x)$$

$$\Rightarrow$$
 -sin²x -cos²x -1- sin²x

 $= -2-\sin 2x$

 \therefore minimum value when $\sin 2x = 1$

$$m = -2-1 = -3$$

 \therefore Maximum value when $\sin 2x = -1$

$$(m, M) = (-3, -1)$$

Q.11 A ray of light coming from the point $(2, 2\sqrt{3})$ is incident at an angle 30° on the line x = 1 at the point A. The ray gets reflected on the line x = 1 and meets x-axis at the point B. Then, the line AB passes through the point:

$$(1)(4,-\sqrt{3})$$

(2)
$$\left(3, -\frac{1}{\sqrt{3}}\right)$$
 (3) $\left(3, -\sqrt{3}\right)$ (4) $\left(4, -\frac{\sqrt{3}}{2}\right)$

(3) (3,
$$-\sqrt{3}$$
)

$$(4) \left(4, -\frac{\sqrt{3}}{2}\right)$$

Sol. 3

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

Equation of P'B \rightarrow y $-2\sqrt{3}$ = tan 120° (x - 0)

$$\sqrt{3} x + y = 2\sqrt{3}$$

 $(3, -\sqrt{3})$ satisfy the line

- Q.12 Out of 11 consecutive natural numbers if three numbers are selected at random (without repetition), then the probability that they are in A.P. with positive common difference, is:
 - $(1) \frac{10}{99}$
- (2) $\frac{5}{33}$ (3) $\frac{15}{101}$ (4) $\frac{5}{101}$

Sol.

Case-1

E, O, E, O, E, O, E, O, E

 $2b = a + c \rightarrow Even$

 \Rightarrow Both a and c should be either even or odd.

$$P = \frac{{}^{6}C_{2} + {}^{5}C_{2}}{{}^{11}C_{3}} = \frac{5}{33}$$

O, E, O, E, O, E, O, E, O

$$P = \frac{{}^{5}C_{2} + {}^{6}C_{2}}{{}^{11}C_{3}} = \frac{5}{33}$$

Total probability = $\frac{1}{2} \times \frac{5}{33} + \frac{1}{2} \times \frac{5}{33} = \frac{5}{33}$

Q.13 If f(x + y) = f(x) f(y) and $\sum_{x=1}^{\infty} f(x) = 2$, x, $y \in \mathbb{N}$, where \mathbb{N} is the set of all natural number, then the

value of $\frac{f(4)}{f(2)}$ is :

$$(1) \frac{2}{3}$$

(2)
$$\frac{1}{9}$$

(2)
$$\frac{1}{9}$$
 (3) $\frac{1}{3}$ (4) $\frac{4}{9}$

$$(4) \frac{4}{9}$$

Sol.

$$f(x + y) = f(x) f(y)$$

$$f(2) = (f(1))^2$$

* Put
$$x = 2$$
, $y = 1$

$$f(3) = f(2)$$
. $f(1) = f((1))^3$

* Put
$$x = 2$$
, $y = 2$

* Put x = 2, y = 2

$$f(4) = f((2))^2 = f((1))^4$$

$$f(n) = (f(1))^n$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION

$$\sum_{x=1}^{\infty} f(x) = f(1) + f(2) + f(3) + \dots f(\infty) = 2$$

$$\Rightarrow f(1) + f((1))^{2} + f((1))^{3} + \dots = 2$$

$$\frac{f(1)}{1 - f(1)} = 2$$

$$f(1) = 2/3$$

$$f(2) = \left(\frac{2}{3}\right)^{2}, f(4) = \left(\frac{2}{3}\right)^{4}$$

$$\frac{f(4)}{f(2)} = \frac{(2/3)^{4}}{(2/3)^{2}} = \frac{4}{9}$$

- **Q.14** If {p} denotes the fractional part of the number p, then $\left\{\frac{3^{200}}{8}\right\}$, is equal to :
 - $(1) \frac{5}{8}$
- (2) $\frac{1}{8}$
- (3) $\frac{7}{8}$ (4) $\frac{3}{8}$

Sol.

$$\begin{cases}
\frac{3^{200}}{8} = \frac{9^{100}}{8} = \frac{(8+1)^{100}}{8} \\
\begin{cases}
\frac{1^{100}C_01^{100} + {}^{100}C_1(8)1^{99} + {}^{100}C_2(8^2)1^{98} + \dots + {}^{100}C_{100}8^{100}}{8} \\
\end{cases}$$

$$= \frac{1^{100}C_01^{100} + 8k}{8} \\
= \frac{1+8k}{8} = \frac{1}{8} + k K K \in I$$

- Q.15 Which of the following points lies on the locus of the foot of perpedicular drawn upon any tangent to the ellipse, $\frac{X^2}{4} + \frac{y^2}{2} = 1$ from any of its foci?

 $=\frac{1}{8}$

- $(1) (-1, \sqrt{3})$ $(2) (-2, \sqrt{3})$ $(3) (-1, \sqrt{2})$ (4) (1, 2)

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

 Doubt Support Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

Sol. 4

Let foot of perpendicular is (h,k)

$$\frac{x^2}{4} + \frac{y^2}{2} = 1$$
 (Given \$)\$

$$a = 2, b = \sqrt{2}, e = \sqrt{1 - \frac{2}{4}} = \frac{1}{\sqrt{2}}$$

$$\therefore$$
 Focus (ae,0) = $(\sqrt{2},0)$

Equation of tangent

$$y = mx + \sqrt{a^2m^2 + b^2}$$

$$v = mx + \sqrt{4m^2 + 2}$$

Passes through (h,k) $(k-mh)^2 = 4m^2 + 2$

line perpendicular to tangent will have slope

$$-\frac{1}{m}$$

$$y-0=-\frac{1}{m}(x-\sqrt{2})$$

$$my = -x + \sqrt{2}$$

$$(h+mk)^2=2$$

Add equaiton (1) and (2) $k^2(1+m^2)+h^2(1+m^2)=4(1+m^2)$

$$h^2 + k^2 = 4$$

$$x^2 + y^2 = 4$$
 (Auxilary circle)

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access
 Live Test Paper Discussion ◆ Final Revision Exercises

 $\therefore (-1, \sqrt{3})$ lies on the locus.

Q.16
$$\lim_{x\to 1} \left(\frac{\int_0^{(x-1)^2} t \cos(t^2) dt}{(x-1)\sin(x-1)} \right)$$

(1) is equal to 1 (2) is equal to $\frac{1}{2}$ (3) does not xist (4) is equal to $-\frac{1}{2}$

Sol

$$\lim_{x \to 1} \left(\frac{\int_0^{(x-1)^2} t \cos(t^2) dt}{(x-1) \sin(x-1)} \right)$$

$$= \lim_{x \to 1} \frac{2(x-1) \cdot (x-1)^2 \cos(x-1)^4 - 0}{(x-1) \cdot \cos(x-1) + \sin(x-1)} \left(\frac{0}{0}\right)$$

$$= \lim_{x \to 1} \frac{2(x-1)^3 \cdot \cos(x-1)^4}{(x-1) \left[\cos(x-1) + \frac{\sin(x-1)}{(x-1)}\right]}$$

$$= \lim_{x \to 1} \frac{2(x-1)^2 \cos(x-1)^4}{(x-1) \left[\cos(x-1) + \frac{\sin(x-1)}{(x-1)}\right]}$$

$$= \lim_{x \to 1} \frac{2(x-1)^2 \cos(x-1)^4}{\cos(x-1) + \frac{\sin(x-1)}{(x-1)}}$$

on taking limit

$$=\frac{0}{1+1}=0$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

 ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

- **Q.17** If $\sum_{i=1}^{n} (x_i a) = n$ and $\sum_{i=1}^{n} (x_i a)^2 = na$, (n, a > 1) then the standard deviation of n observations $x_1, x_2, ..., x_n$ is :
 - (1) n $\sqrt{a-1}$ (2) $\sqrt{na-1}$
- (3) a 1 (4) $\sqrt{a-1}$

Sol.

S.D. =
$$\sqrt{\frac{\Sigma(x_i - a)^2}{n} - \left(\frac{\Sigma(x_i - a)}{n}\right)^2}$$

= $\sqrt{\left(\frac{na}{n}\right) - \left(\frac{n}{n}\right)^2} = \sqrt{a - 1}$

Q.18 If α and β be two roots of the equation x^2 – 64x + 256 = 0. Then the value of

$$\left(\frac{\alpha^3}{\beta^5}\right)^{\!\!1/8} + \left(\frac{\beta^3}{\alpha^5}\right)^{\!\!1/8} \text{ is :}$$

- (2)3
- (3)2
- (4)4

Sol.

(1) 1
3

$$x^2 - 64x + 256 = 0$$

 $\alpha + \beta = 64$
 $\alpha\beta = 256$

$$\left(\frac{\alpha^3}{\beta^5}\right)^{1/8} + \left(\frac{\beta^3}{\alpha^5}\right)^{1/8}$$

$$=\frac{\alpha+\beta}{(\alpha\beta)^{5/8}}=\frac{64}{(256)^{5/8}}=\frac{64}{32}=2$$

Q.19 The position of a moving car at time t is given by $f(t) = at^2 + bt + c$, t > 0, where a, b and c are real numbers greater than 1. Then the average speed of the car over the time interval $[t_1, t_2]$ is attained at the point :

$$(1) (t_1 + t_2)/2$$

(2)
$$2a(t_1 + t_2) + b$$
 (3) $(t_2 - t_1)/2$ (4) $a(t_2 - t_1) + b$

(3)
$$(t_2 - t_1)/2$$

(4)
$$a(t_2 - t_1) + b$$

Sol.

$$f'(t) = V_{av} = \frac{f(t_2) - f(t_1)}{t_2 - t_1}$$

$$= \frac{a(t_2^2 - t_1^2) + b(t_2 - t_1)}{t_2 - t_1}$$

$$= a(t_1 + t_2) + b = 2at + b$$

$$t = \frac{t_1 + t_2}{2}$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

 Doubt Support Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION

Q.20 If $I_1 = \int_0^1 (1 - x^{50})^{100} dx$ and $I_2 = \int_0^1 (1 - x^{50})^{101} dx$ such that $I_2 = \alpha I_1$ then α equals to :

(1)
$$\frac{5050}{5049}$$
 (2) $\frac{5050}{5051}$ (3) $\frac{5051}{5050}$

$$(2) \ \frac{5050}{5051}$$

$$(3) \ \frac{5051}{5050}$$

(4)
$$\frac{5049}{5050}$$

Sol.

$$I_1 = \int_0^1 (1 - x^{50})^{100} dx$$

$$I_2 = \int_0^1 (1 - x^{50})(1 - x^{50})^{100} dx$$

$$= \int_0^1 (1 - x^{50})^{100} dx - \int_0^1 x^{50} (1 - x^{50})^{100} dx$$

$$I_2 = I_1 - \int_0^1 \frac{x}{1} - \frac{x^{49}(1 - x^{50})^{100}}{\pi} dx$$

$$1 - x^{50} = t$$

$$\Rightarrow$$
 $x^{49} dx = \frac{-dt}{50}$

$$I_{2} = I_{1} - \left[x \left(\frac{-1}{50} \right) \frac{(1 - x^{50})^{101}}{101} \right]_{0}^{1} + \int_{0}^{1} \left(\frac{-1}{50} \right) \frac{(1 - x^{50})^{101}}{101}$$

$$I_2 = I_1 - 0 + \frac{\int_0^1 (1 - X^{50})^{101}}{(-5050)} dx$$

$$I_2 = I_1 - \frac{I_2}{5050}$$

$$\frac{5051}{5050} I_2 = I_1$$

$$I_2 = \frac{5050}{5051} I_1$$

$$\alpha = \frac{5050}{5051}$$

Q.21 If \vec{a} and \vec{b} are unit vectors, then the greatest value of $\sqrt{3} |\vec{a} + \vec{b}| + |\vec{a} - \vec{b}|$ is _____.

Sol.

$$\sqrt{3} |\vec{a} + \vec{b}| + |\vec{a} - \vec{b}|$$

$$= \sqrt{3} (\sqrt{2 + 2\cos\theta}) + \sqrt{2 - 2\cos\theta}$$

$$= \sqrt{6} (\sqrt{1 + \cos\theta}) + \sqrt{2} (\sqrt{1 - \cos\theta})$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

 Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

$$= 2\sqrt{3} \left| \cos \frac{\theta}{2} \right| + 2 \left| \sin \frac{\theta}{2} \right|$$
$$\leq \sqrt{(2\sqrt{3})^2 + (2)^2} = 4$$

- Q.22 Let AD and BC be two vertical poles at A and B respectively on a horizontal ground. If AD = 8 m, BC = 11 m and AB = 10 m; then the distance (in meters) of a point M on AB from the point A such that MD² +MC² is minimum is _
- Sol.

$$(MD)^2 = x^2 + 8^2 = x^2 + 64$$

 $(MC)^2 = (10-x)^2 + (11)^2 = (x-10)^2 + 121$
 $f(x) = (MD)^2 + (MC)^2 = x^2 + 64 + (x-10)^2 + (2)$
Differentiate
 $f'(x) = 0$
 $2x + 2(x-10) = 0$
 $4x = 20 \Rightarrow x = 5$
 $f''(x) = 4 > 0$

Q.23 Let $f: R \to R$ be defined as

at x = 5 point of minima

$$f(x) = \begin{cases} x^{5} \sin\left(\frac{1}{x}\right) + 5x^{2}, & x < 0 \\ 0, & x = 0 \\ x^{5} \cos\left(\frac{1}{x}\right) + \lambda x^{2}, & x > 0 \end{cases}$$

The value of λ for which f''(0) exists, is _____.

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

 Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

Sol. 5

$$f(x) = \begin{cases} x^5 \sin\left(\frac{1}{x}\right) + 5x^2, & x < 0 \\ 0, & x = 0 \\ x^5 \cos\left(\frac{1}{x}\right) + \lambda x^2, & x > 0 \end{cases}$$

$$f'(x) \begin{cases} 5x^4 sin\left(\frac{1}{x}\right) - x^3 cos\left(\frac{1}{x}\right) + 10x, x < 0 \\ 0, & x = 0 \\ 5x^4 cos\left(\frac{1}{x}\right) + x^3 sin\left(\frac{1}{x}\right) + 2\lambda x, x > 0 \end{cases}$$

$$f''(x) = \begin{cases} 20x^{3} \sin\left(\frac{1}{x}\right) - 5x^{2} \cos\left(\frac{1}{x}\right) - 3x^{2} \cos\left(\frac{1}{x}\right) - x \sin\left(\frac{1}{x}\right) + 10, \ x < 0 \\ 0, \ x = 0 \\ \\ 20x^{3} \cos\left(\frac{1}{x}\right) + 5x^{2} \sin\left(\frac{1}{x}\right) + 3x^{2} \sin\left(\frac{1}{x}\right) - x \cos\left(\frac{1}{x}\right) + 2\lambda \\ , x > 0 \end{cases}$$

$$f''(0^+) = f''(0^-)$$

 $2\lambda = 10 \Rightarrow \lambda = 5$

- Q.24 The angle of elevation of the top of a hill from a point on the horizontal plane passing through the foot of the hill is found to be 45°. After walking a distance of 80 meters towards the top, up a slope inclined at an angle of 30° to the horizontal plane, the angle of elevation of the top of the hill becomes 75°. Then the height of the hill (in meters) is _____.
- Sol.

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

$$x = 80 \cos 30^{\circ} = 40 \sqrt{3}$$

 $y = 80 \sin 30^{\circ} = 40$
In $\triangle ADC$

$$\tan 45^{\circ} = \frac{h}{x+z} \Rightarrow h = x+z$$

$$\Rightarrow$$
 h = $40\sqrt{3}$ + z(i)

In ΛEDF

$$tan 75^{\circ} \frac{h-y}{z}$$

$$2 + \sqrt{3} = \frac{h - 40}{z} \Rightarrow z = \frac{h - 40}{2 + \sqrt{3}}$$
....(ii)

Put the value of z from (i)

$$h - 40\sqrt{3} = \frac{h - 40}{2 + \sqrt{3}}$$

$$h(1 + \sqrt{3}) = 40(2\sqrt{3} + 3 - 1)$$

$$h(1 + \sqrt{3}) = 80(1 + \sqrt{3})$$

h = 80

Q.25 Set A has m elements and set B has n elements. If the total number of subsets of A is 112 more than the total number of subsets of B, then the value of m.n is _____.

Sol.

A & B are set

No. of subset of $A = 2^m$

No. of subset of $B = 2^n$

$$2^{m} = 2^{n} + 112$$

$$2^{m} - 2^{n} = 112$$

$$2^{n}(2^{m-n}-1) = 112$$

$$2^{n}(2^{m-n}-1) = 2^{4}(2^{3}-1)$$

 $n = 4$ $m-n = 3$

$$m = 4$$

 $m - 4 = 3 \Rightarrow m = 7$

$$m. n = 28$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

Admission **OPEN**

जब इन्होने पूरा किया अपना सपना तो आप भी पा सकते है लक्ष्य अपना

JEE MAIN RESULT 2019

Nitin Gupta

335

Shiv Modi

Ritik Bansal

308

Shubham Kumar

300

KOTA'S PIONEER IN DIGITAL EDUCATION 1,95,00,000+ viewers | 72,67,900+ viewing hours | 2,11,000+ Subscribers

SERVICES	SILVER	GOLD	PLATINUM
Classroom Lectures (VOD)			
Live interaction	NA		
Doubt Support	NA		
Academic & Technical Support	NA		
Complete access to all content	NA		
Classroom Study Material	NA		
Exercise Sheets	NA		
Recorded Video Solutions	NA		
Online Test Series	NA		
Revision Material	NA		
Upgrade to Regular Classroom program	Chargeable	Chargeable	Free
Physical Classroom	NA	NA	
Computer Based Test	NA	NA	
Student Performance Report	NA	NA	
Workshop & Camp	NA	NA	
Motion Solution Lab- Supervised learning and instant doubt clearance	NA	NA	
Personalised guidance and mentoring	NA	NA	

FEE STRUCTURE

CLASS	SILVER	GOLD	PLATINUM
7th/8th	FREE	₹ 12,000	₹ 35,000
9th/10th	FREE	₹ 15,000	₹ 40,000
11th	FREE	₹ 29,999	₹ 49,999
12th	FREE	₹ 39,999	₹ 54,999
12th Pass	FREE	₹ 39,999	₹ 59,999

- + Student Kit will be provided at extra cost to Platinum Student.
- SILVER (Trial) Only valid 7 DAYS or First 10 Hour's Lectures.
- GOLD (Online) can be converted to regular classroom (Any MOTION Center) by paying difference amount after lockdown.
- PLATINUM (Online + Regular) can be converted to regular classroom (Any MOTION Center) without any cost after lockdown.

New Batch Starting from:

16 & 23 September 2020

Zero Cost EMI Available

